Electrical Technology

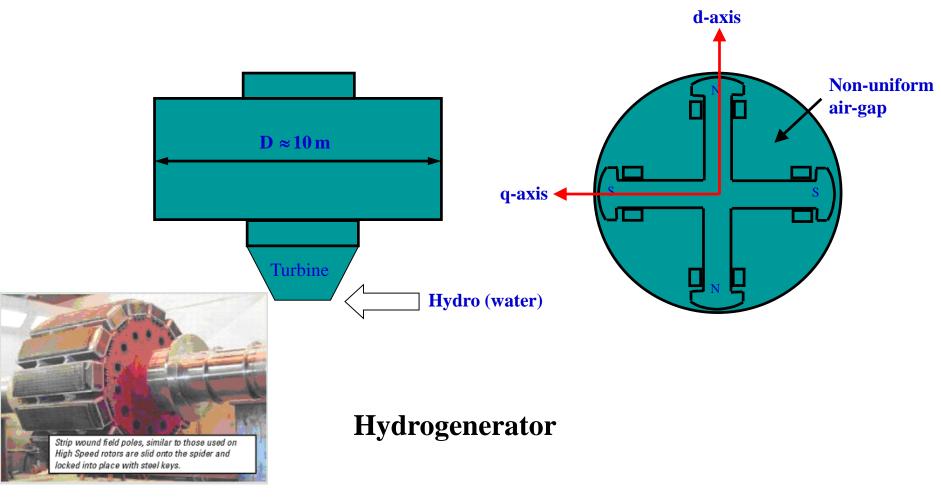
Contents

- Synchronous Machines
- Construction
- Various types
- Equivalent electrical circuit
- Phasor Diagram

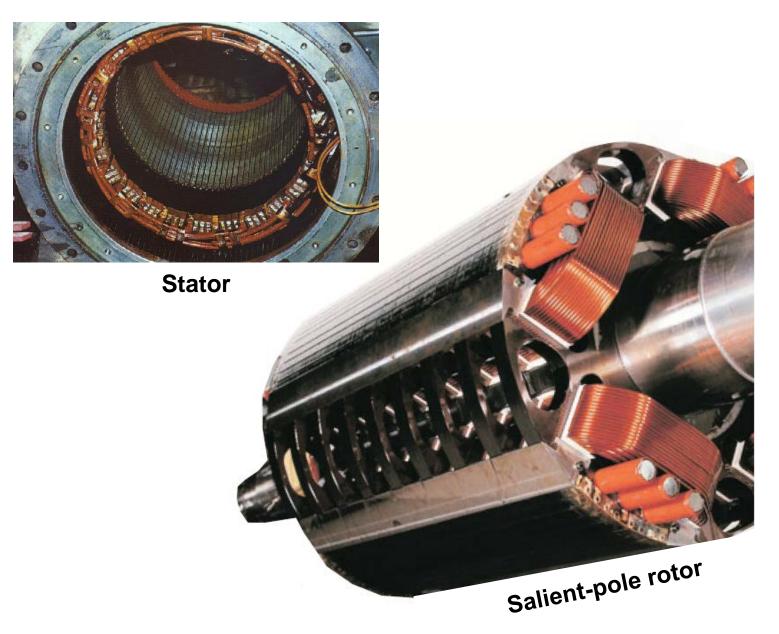
Synchronous Machines

- *Synchronous generators* or *alternators* are used to convert mechanical power derived from steam, gas, or hydraulic-turbine to ac electric power
- Synchronous generators are the primary source of electrical energy we consume today
- Large ac power networks rely almost exclusively on synchronous generators
- *Synchronous motors* are built in large units compare to induction motors (Induction motors are cheaper for smaller ratings) and used for constant speed industrial drives

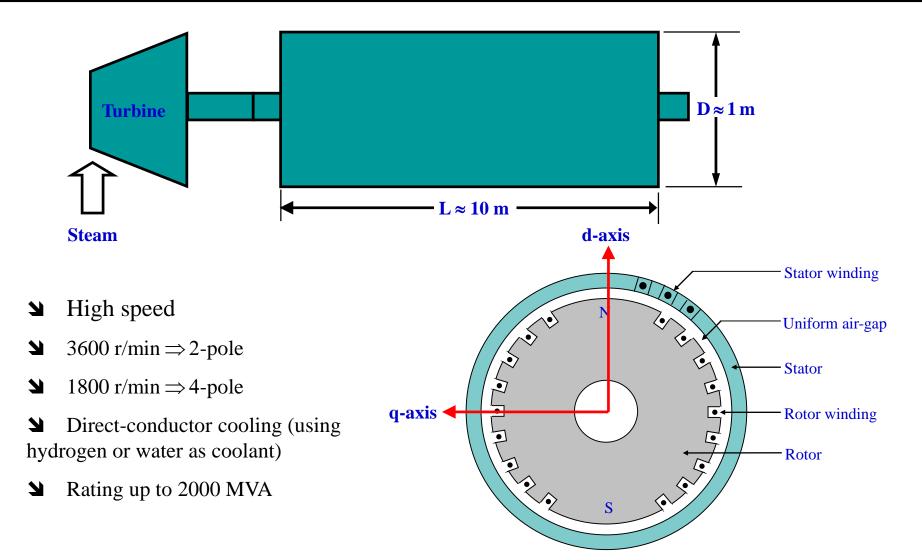
Basic parts of a synchronous generator:


- Rotor dc excited winding
- Stator 3-phase winding in which the ac emf is generated
- The manner in which the active parts of a synchronous machine are cooled determines its overall physical size and structure

□ Salient-pole synchronous machine

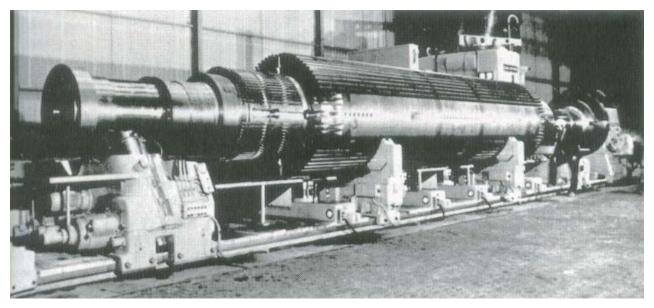

Cylindrical or round-rotor synchronous machine

Salient-Pole Synchronous Generator


- 1. Most hydraulic turbines have to turn at low speeds (between 50 and 300 r/min)
- 2. A large number of poles are required on the rotor

Salient-Pole Synchronous Generator

Cylindrical-Rotor Synchronous Generator



Turbogenerator

Cylindrical-Rotor Synchronous Generator

Stator

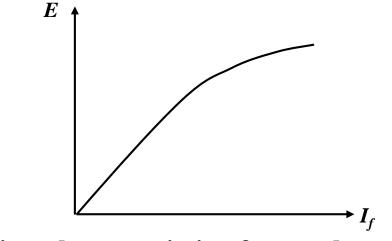
Cylindrical rotor

Operation Principle

The rotor of the generator is driven by a prime-mover

A dc current is flowing in the rotor winding which produces a rotating magnetic field within the machine

The rotating magnetic field induces a three-phase voltage in the stator winding of the generator


Electrical frequency produced is locked or synchronized to the mechanical speed of rotation of a synchronous generator:

$$f_e = \frac{P n_m}{120}$$

where f_e = electrical frequency in Hz P = number of poles n_m = mechanical speed of the rotor, in r/min The generated voltage of a synchronous generator is given by

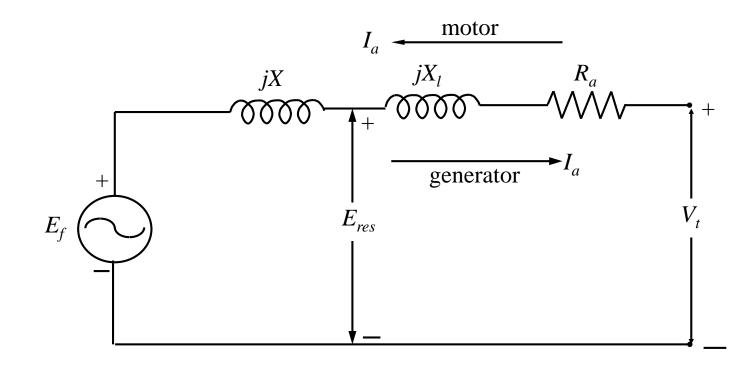
$$E = K_c \phi f_e$$

where $\phi = \text{flux}$ in the machine (function of I_f) $f_e = \text{electrical frequency}$ $K_c = \text{synchronous machine constant}$

Saturation characteristic of a synchronous generator.

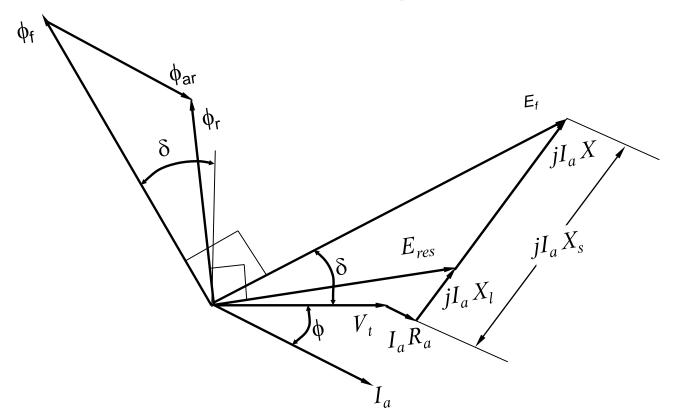
Voltage Regulation

A convenient way to compare the voltage behaviour of two generators is by their *voltage regulation* (*VR*). The *VR* of a synchronous generator at a given load, power factor, and at rated speed is defined as


$$VR = \frac{E_{nl} - V_{fl}}{V_{fl}} \times 100\%$$

Where V_{fl} is the full-load terminal voltage, and E_{nl} (equal to E_f) is the no-load terminal voltage (internal voltage) at rated speed when the load is removed without changing the field current. For lagging power factor (*PF*), *VR* is fairly positive, for unity *PF*, *VR* is small positive and for leading *PF*, *VR* is negative.

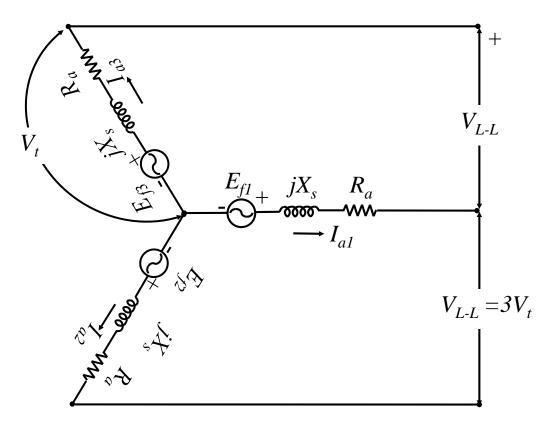
Equivalent Circuit_1


- The internal voltage E_f produced in a machine is not usually the voltage that appears at the terminals of the generator.
- The only time E_f is same as the output voltage of a phase is when there is no armature current flowing in the machine.
- There are a number of factors that cause the difference between E_f and V_t :
 - The distortion of the air-gap magnetic field by the current flowing in the stator, called the armature reaction
 - The self-inductance of the armature coils.
 - The resistance of the armature coils.
 - The effect of salient-pole rotor shapes.

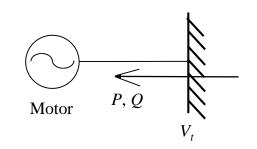
Equivalent Circuit_2

Equivalent circuit of a cylindrical-rotor synchronous machine

Phasor Diagram



Phasor diagram of a cylindrical-rotor synchronous generator, for the case of lagging power factor


Lagging PF: $|V_t| < |E_f|$ for overexcited condition Leading PF: $|V_t| > |E_f|$ for underexcited condition

<u>Three-phase equivalent circuit of a cylindrical-rotor</u> <u>synchronous machine</u>

The voltages and currents of the three phases are 120° apart in angle, but otherwise the three phases are identical.

Synchronous Motors

- A synchronous motor is the same physical machine as a generator, except that the direction of real power flow is reversed
- Synchronous motors are used to convert electric power to mechanical power
- Most synchronous motors are rated between 150 kW (200 hp) and 15 MW (20,000 hp) and turn at speed ranging from 150 to 1800 r/min. Consequently, these machines are used in heavy industry
- At the other end of the power spectrum, we find tiny singlephase synchronous motors used in control devices and electric clocks

Operation Principle

- The field current of a synchronous motor produces a steadystate magnetic field B_R
- A three-phase set of voltages is applied to the stator windings of the motor, which produces a three-phase current flow in the windings. This three-phase set of currents in the armature winding produces a uniform rotating magnetic field of B_s
- Therefore, there are two magnetic fields present in the machine, and *the rotor field will tend to line up with the stator field*, just as two bar magnets will tend to line up if placed near each other.
- Since the stator magnetic field is rotating, the rotor magnetic field (and the rotor itself) will try to catch up
- The larger the angle between the two magnetic fields (up to certain maximum), the greater the torque on the rotor of the machine

Vector Diagram

- The equivalent circuit of a synchronous motor is exactly same as the equivalent circuit of a synchronous generator, except that the reference direction of I_a is reversed.
- The basic difference between motor and generator operation in synchronous machines can be seen either in the magnetic field diagram or in the phasor diagram.
- In a generator, E_f lies ahead of V_t , and B_R lies ahead of B_{net} . In a motor, E_f lies behind V_t , and B_R lies behind B_{net} .
- In a motor the induced torque is in the direction of motion, and in a generator the induced torque is a countertorque opposing the direction of motion

Vector Diagram

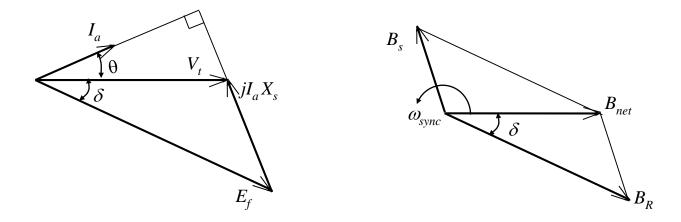


Fig. The phasor diagram (leading PF: overexcited and $|V_t| < |E_f|$) and the corresponding magnetic field diagram of a synchronous motor.

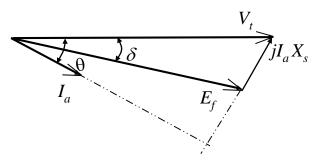


Fig. The phasor diagram of an underexcited synchronous motor (lagging PF and $|V_t| > |E_f|$).

Application of Synchronous Motors

Synchronous motors are usually used in large sizes because in small sizes they are costlier as compared with induction machines. The principal advantages of using synchronous machine are as follows:

- Power factor of synchronous machine can be controlled very easily by controlling the field current.
- It has very high operating efficiency and constant speed.
- For operating speed less than about 500 rpm and for high-power requirements (above 600KW) synchronous motor is cheaper than induction motor.

In view of these advantages, synchronous motors are preferred for driving the loads requiring high power at low speed; e.g; reciprocating pumps and compressor, crushers, rolling mills, pulp grinders etc.